The search functionality is under construction.

Keyword Search Result

[Keyword] attention mechanism(36hit)

21-36hit(36hit)

  • Capsule Network with Shortcut Routing Open Access

    Thanh Vu DANG  Hoang Trong VO  Gwang Hyun YU  Jin Young KIM  

     
    PAPER-Image

      Pubricized:
    2021/01/27
      Vol:
    E104-A No:8
      Page(s):
    1043-1050

    Capsules are fundamental informative units that are introduced into capsule networks to manipulate the hierarchical presentation of patterns. The part-hole relationship of an entity is learned through capsule layers, using a routing-by-agreement mechanism that is approximated by a voting procedure. Nevertheless, existing routing methods are computationally inefficient. We address this issue by proposing a novel routing mechanism, namely “shortcut routing”, that directly learns to activate global capsules from local capsules. In our method, the number of operations in the routing procedure is reduced by omitting the capsules in intermediate layers, resulting in lighter routing. To further address the computational problem, we investigate an attention-based approach, and propose fuzzy coefficients, which have been found to be efficient than mixture coefficients from EM routing. Our method achieves on-par classification results on the Mnist (99.52%), smallnorb (93.91%), and affNist (89.02%) datasets. Compared to EM routing, our fuzzy-based and attention-based routing methods attain reductions of 1.42 and 2.5 in terms of the number of calculations.

  • CJAM: Convolutional Neural Network Joint Attention Mechanism in Gait Recognition

    Pengtao JIA  Qi ZHAO  Boze LI  Jing ZHANG  

     
    PAPER

      Pubricized:
    2021/04/28
      Vol:
    E104-D No:8
      Page(s):
    1239-1249

    Gait recognition distinguishes one individual from others according to the natural patterns of human gaits. Gait recognition is a challenging signal processing technology for biometric identification due to the ambiguity of contours and the complex feature extraction procedure. In this work, we proposed a new model - the convolutional neural network (CNN) joint attention mechanism (CJAM) - to classify the gait sequences and conduct person identification using the CASIA-A and CASIA-B gait datasets. The CNN model has the ability to extract gait features, and the attention mechanism continuously focuses on the most discriminative area to achieve person identification. We present a comprehensive transformation from gait image preprocessing to final identification. The results from 12 experiments show that the new attention model leads to a lower error rate than others. The CJAM model improved the 3D-CNN, CNN-LSTM (long short-term memory), and the simple CNN by 8.44%, 2.94% and 1.45%, respectively.

  • A Two-Stage Attention Based Modality Fusion Framework for Multi-Modal Speech Emotion Recognition

    Dongni HU  Chengxin CHEN  Pengyuan ZHANG  Junfeng LI  Yonghong YAN  Qingwei ZHAO  

     
    LETTER-Human-computer Interaction

      Pubricized:
    2021/04/30
      Vol:
    E104-D No:8
      Page(s):
    1391-1394

    Recently, automated recognition and analysis of human emotion has attracted increasing attention from multidisciplinary communities. However, it is challenging to utilize the emotional information simultaneously from multiple modalities. Previous studies have explored different fusion methods, but they mainly focused on either inter-modality interaction or intra-modality interaction. In this letter, we propose a novel two-stage fusion strategy named modality attention flow (MAF) to model the intra- and inter-modality interactions simultaneously in a unified end-to-end framework. Experimental results show that the proposed approach outperforms the widely used late fusion methods, and achieves even better performance when the number of stacked MAF blocks increases.

  • Attention Voting Network with Prior Distance Augmented Loss for 6DoF Pose Estimation

    Yong HE  Ji LI  Xuanhong ZHOU  Zewei CHEN  Xin LIU  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/03/26
      Vol:
    E104-D No:7
      Page(s):
    1039-1048

    6DoF pose estimation from a monocular RGB image is a challenging but fundamental task. The methods based on unit direction vector-field representation and Hough voting strategy achieved state-of-the-art performance. Nevertheless, they apply the smooth l1 loss to learn the two elements of the unit vector separately, resulting in which is not taken into account that the prior distance between the pixel and the keypoint. While the positioning error is significantly affected by the prior distance. In this work, we propose a Prior Distance Augmented Loss (PDAL) to exploit the prior distance for more accurate vector-field representation. Furthermore, we propose a lightweight channel-level attention module for adaptive feature fusion. Embedding this Adaptive Fusion Attention Module (AFAM) into the U-Net, we build an Attention Voting Network to further improve the performance of our method. We conduct extensive experiments to demonstrate the effectiveness and performance improvement of our methods on the LINEMOD, OCCLUSION and YCB-Video datasets. Our experiments show that the proposed methods bring significant performance gains and outperform state-of-the-art RGB-based methods without any post-refinement.

  • Vision-Text Time Series Correlation for Visual-to-Language Story Generation

    Rizal Setya PERDANA  Yoshiteru ISHIDA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/03/08
      Vol:
    E104-D No:6
      Page(s):
    828-839

    Automatic generation of textual stories from visual data representation, known as visual storytelling, is a recent advancement in the problem of images-to-text. Instead of using a single image as input, visual storytelling processes a sequential array of images into coherent sentences. A story contains non-visual concepts as well as descriptions of literal object(s). While previous approaches have applied external knowledge, our approach was to regard the non-visual concept as the semantic correlation between visual modality and textual modality. This paper, therefore, presents new features representation based on a canonical correlation analysis between two modalities. Attention mechanism are adopted as the underlying architecture of the image-to-text problem, rather than standard encoder-decoder models. Canonical Correlation Attention Mechanism (CAAM), the proposed end-to-end architecture, extracts time series correlation by maximizing the cross-modal correlation. Extensive experiments on VIST dataset ( http://visionandlanguage.net/VIST/dataset.html ) were conducted to demonstrate the effectiveness of the architecture in terms of automatic metrics, with additional experiments show the impact of modality fusion strategy.

  • HAIF: A Hierarchical Attention-Based Model of Filtering Invalid Webpage

    Chaoran ZHOU  Jianping ZHAO  Tai MA  Xin ZHOU  

     
    PAPER

      Pubricized:
    2021/02/25
      Vol:
    E104-D No:5
      Page(s):
    659-668

    In Internet applications, when users search for information, the search engines invariably return some invalid webpages that do not contain valid information. These invalid webpages interfere with the users' access to useful information, affect the efficiency of users' information query and occupy Internet resources. Accurate and fast filtering of invalid webpages can purify the Internet environment and provide convenience for netizens. This paper proposes an invalid webpage filtering model (HAIF) based on deep learning and hierarchical attention mechanism. HAIF improves the semantic and sequence information representation of webpage text by concatenating lexical-level embeddings and paragraph-level embeddings. HAIF introduces hierarchical attention mechanism to optimize the extraction of text sequence features and webpage tag features. Among them, the local-level attention layer optimizes the local information in the plain text. By concatenating the input embeddings and the feature matrix after local-level attention calculation, it enriches the representation of information. The tag-level attention layer introduces webpage structural feature information on the attention calculation of different HTML tags, so that HAIF is better applicable to the Internet resource field. In order to evaluate the effectiveness of HAIF in filtering invalid pages, we conducted various experiments. Experimental results demonstrate that, compared with other baseline models, HAIF has improved to various degrees on various evaluation criteria.

  • A Novel Hybrid Network Model Based on Attentional Multi-Feature Fusion for Deception Detection

    Yuanbo FANG  Hongliang FU  Huawei TAO  Ruiyu LIANG  Li ZHAO  

     
    LETTER-Speech and Hearing

      Pubricized:
    2020/09/24
      Vol:
    E104-A No:3
      Page(s):
    622-626

    Speech based deception detection using deep learning is one of the technologies to realize a deception detection system with high recognition rate in the future. Multi-network feature extraction technology can effectively improve the recognition performance of the system, but due to the limited labeled data and the lack of effective feature fusion methods, the performance of the network is limited. Based on this, a novel hybrid network model based on attentional multi-feature fusion (HN-AMFF) is proposed. Firstly, the static features of large amounts of unlabeled speech data are input into DAE for unsupervised training. Secondly, the frame-level features and static features of a small amount of labeled speech data are simultaneously input into the LSTM network and the encoded output part of DAE for joint supervised training. Finally, a feature fusion algorithm based on attention mechanism is proposed, which can get the optimal feature set in the training process. Simulation results show that the proposed feature fusion method is significantly better than traditional feature fusion methods, and the model can achieve advanced performance with only a small amount of labeled data.

  • Neural Architecture Search for Convolutional Neural Networks with Attention

    Kohei NAKAI  Takashi MATSUBARA  Kuniaki UEHARA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2020/10/26
      Vol:
    E104-D No:2
      Page(s):
    312-321

    The recent development of neural architecture search (NAS) has enabled us to automatically discover architectures of neural networks with high performance within a few days. Convolutional neural networks extract fruitful features by repeatedly applying standard operations (convolutions and poolings). However, these operations also extract useless or even disturbing features. Attention mechanisms enable neural networks to discard information of no interest, having achieved the state-of-the-art performance. While a variety of attentions for CNNs have been proposed, current NAS methods have paid a little attention to them. In this study, we propose a novel NAS method that searches attentions as well as operations. We examined several patterns to arrange attentions and operations, and found that attentions work better when they have their own search space and follow operations. We demonstrate the superior performance of our method in experiments on CIFAR-10, CIFAR-100, and ImageNet datasets. The found architecture achieved lower classification error rates and required fewer parameters compared to those found by current NAS methods.

  • Joint Representations of Knowledge Graphs and Textual Information via Reference Sentences

    Zizheng JI  Zhengchao LEI  Tingting SHEN  Jing ZHANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/02/26
      Vol:
    E103-D No:6
      Page(s):
    1362-1370

    The joint representations of knowledge graph have become an important approach to improve the quality of knowledge graph, which is beneficial to machine learning, data mining, and artificial intelligence applications. However, the previous work suffers severely from the noise in text when modeling the text information. To overcome this problem, this paper mines the high-quality reference sentences of the entities in the knowledge graph, to enhance the representation ability of the entities. A novel framework for joint representation learning of knowledge graphs and text information based on reference sentence noise-reduction is proposed, which embeds the entity, the relations, and the words into a unified vector space. The proposed framework consists of knowledge graph representation learning module, textual relation representation learning module, and textual entity representation learning module. Experiments on entity prediction, relation prediction, and triple classification tasks are conducted, results show that the proposed framework can significantly improve the performance of mining and fusing the text information. Especially, compared with the state-of-the-art method[15], the proposed framework improves the metric of H@10 by 5.08% and 3.93% in entity prediction task and relation prediction task, respectively, and improves the metric of accuracy by 5.08% in triple classification task.

  • Neural Machine Translation with Target-Attention Model

    Mingming YANG  Min ZHANG  Kehai CHEN  Rui WANG  Tiejun ZHAO  

     
    PAPER-Natural Language Processing

      Pubricized:
    2019/11/26
      Vol:
    E103-D No:3
      Page(s):
    684-694

    Attention mechanism, which selectively focuses on source-side information to learn a context vector for generating target words, has been shown to be an effective method for neural machine translation (NMT). In fact, generating target words depends on not only the source-side information but also the target-side information. Although the vanilla NMT can acquire target-side information implicitly by recurrent neural networks (RNN), RNN cannot adequately capture the global relationship between target-side words. To solve this problem, this paper proposes a novel target-attention approach to capture this information, thus enhancing target word predictions in NMT. Specifically, we propose three variants of target-attention model to directly obtain the global relationship among target words: 1) a forward target-attention model that uses a target attention mechanism to incorporate previous historical target words into the prediction of the current target word; 2) a reverse target-attention model that adopts a reverse RNN model to obtain the entire reverse target words information, and then to combine with source context information to generate target sequence; 3) a bidirectional target-attention model that combines the forward target-attention model and reverse target-attention model together, which can make full use of target words to further improve the performance of NMT. Our methods can be integrated into both RNN based NMT and self-attention based NMT, and help NMT get global target-side information to improve translation performance. Experiments on the NIST Chinese-to-English and the WMT English-to-German translation tasks show that the proposed models achieve significant improvements over state-of-the-art baselines.

  • Attentive Sequences Recurrent Network for Social Relation Recognition from Video Open Access

    Jinna LV  Bin WU  Yunlei ZHANG  Yunpeng XIAO  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2019/09/02
      Vol:
    E102-D No:12
      Page(s):
    2568-2576

    Recently, social relation analysis receives an increasing amount of attention from text to image data. However, social relation analysis from video is an important problem, which is lacking in the current literature. There are still some challenges: 1) it is hard to learn a satisfactory mapping function from low-level pixels to high-level social relation space; 2) how to efficiently select the most relevant information from noisy and unsegmented video. In this paper, we present an Attentive Sequences Recurrent Network model, called ASRN, to deal with the above challenges. First, in order to explore multiple clues, we design a Multiple Feature Attention (MFA) mechanism to fuse multiple visual features (i.e. image, motion, body, and face). Through this manner, we can generate an appropriate mapping function from low-level video pixels to high-level social relation space. Second, we design a sequence recurrent network based on Global and Local Attention (GLA) mechanism. Specially, an attention mechanism is used in GLA to integrate global feature with local sequence feature to select more relevant sequences for the recognition task. Therefore, the GLA module can better deal with noisy and unsegmented video. At last, extensive experiments on the SRIV dataset demonstrate the performance of our ASRN model.

  • Tweet Stance Detection Using Multi-Kernel Convolution and Attentive LSTM Variants

    Umme Aymun SIDDIQUA  Abu Nowshed CHY  Masaki AONO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/09/25
      Vol:
    E102-D No:12
      Page(s):
    2493-2503

    Stance detection in twitter aims at mining user stances expressed in a tweet towards a single or multiple target entities. Detecting and analyzing user stances from massive opinion-oriented twitter posts provide enormous opportunities to journalists, governments, companies, and other organizations. Most of the prior studies have explored the traditional deep learning models, e.g., long short-term memory (LSTM) and gated recurrent unit (GRU) for detecting stance in tweets. However, compared to these traditional approaches, recently proposed densely connected bidirectional LSTM and nested LSTMs architectures effectively address the vanishing-gradient and overfitting problems as well as dealing with long-term dependencies. In this paper, we propose a neural network model that adopts the strengths of these two LSTM variants to learn better long-term dependencies, where each module coupled with an attention mechanism that amplifies the contribution of important elements in the final representation. We also employ a multi-kernel convolution on top of them to extract the higher-level tweet representations. Results of extensive experiments on single and multi-target benchmark stance detection datasets show that our proposed method achieves substantial improvement over the current state-of-the-art deep learning based methods.

  • Attention-Guided Region Proposal Network for Pedestrian Detection

    Rui SUN  Huihui WANG  Jun ZHANG  Xudong ZHANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2019/07/08
      Vol:
    E102-D No:10
      Page(s):
    2072-2076

    As a research hotspot and difficulty in the field of computer vision, pedestrian detection has been widely used in intelligent driving and traffic monitoring. The popular detection method at present uses region proposal network (RPN) to generate candidate regions, and then classifies the regions. But the RPN produces many erroneous candidate areas, causing region proposals for false positives to increase. This letter uses improved residual attention network to capture the visual attention map of images, then normalized to get the attention score map. The attention score map is used to guide the RPN network to generate more precise candidate regions containing potential target objects. The region proposals, confidence scores, and features generated by the RPN are used to train a cascaded boosted forest classifier to obtain the final results. The experimental results show that our proposed approach achieves highly competitive results on the Caltech and ETH datasets.

  • Attention-Based Dense LSTM for Speech Emotion Recognition Open Access

    Yue XIE  Ruiyu LIANG  Zhenlin LIANG  Li ZHAO  

     
    LETTER-Pattern Recognition

      Pubricized:
    2019/04/17
      Vol:
    E102-D No:7
      Page(s):
    1426-1429

    Despite the widespread use of deep learning for speech emotion recognition, they are severely restricted due to the information loss in the high layer of deep neural networks, as well as the degradation problem. In order to efficiently utilize information and solve degradation, attention-based dense long short-term memory (LSTM) is proposed for speech emotion recognition. LSTM networks with the ability to process time series such as speech are constructed into which attention-based dense connections are introduced. That means the weight coefficients are added to skip-connections of each layer to distinguish the difference of the emotional information between layers and avoid the interference of redundant information from the bottom layer to the effective information from the top layer. The experiments demonstrate that proposed method improves the recognition performance by 12% and 7% on eNTERFACE and IEMOCAP corpus respectively.

  • A Unified Neural Network for Quality Estimation of Machine Translation

    Maoxi LI  Qingyu XIANG  Zhiming CHEN  Mingwen WANG  

     
    LETTER-Natural Language Processing

      Pubricized:
    2018/06/18
      Vol:
    E101-D No:9
      Page(s):
    2417-2421

    The-state-of-the-art neural quality estimation (QE) of machine translation model consists of two sub-networks that are tuned separately, a bidirectional recurrent neural network (RNN) encoder-decoder trained for neural machine translation, called the predictor, and an RNN trained for sentence-level QE tasks, called the estimator. We propose to combine the two sub-networks into a whole neural network, called the unified neural network. When training, the bidirectional RNN encoder-decoder are initialized and pre-trained with the bilingual parallel corpus, and then, the networks are trained jointly to minimize the mean absolute error over the QE training samples. Compared with the predictor and estimator approach, the use of a unified neural network helps to train the parameters of the neural networks that are more suitable for the QE task. Experimental results on the benchmark data set of the WMT17 sentence-level QE shared task show that the proposed unified neural network approach consistently outperforms the predictor and estimator approach and significantly outperforms the other baseline QE approaches.

  • Improve Multichannel Speech Recognition with Temporal and Spatial Information

    Yu ZHANG  Pengyuan ZHANG  Qingwei ZHAO  

     
    LETTER-Speech and Hearing

      Pubricized:
    2018/04/06
      Vol:
    E101-D No:7
      Page(s):
    1963-1967

    In this letter, we explored the usage of spatio-temporal information in one unified framework to improve the performance of multichannel speech recognition. Generalized cross correlation (GCC) is served as spatial feature compensation, and an attention mechanism across time is embedded within long short-term memory (LSTM) neural networks. Experiments on the AMI meeting corpus show that the proposed method provides a 8.2% relative improvement in word error rate (WER) over the model trained directly on the concatenation of multiple microphone outputs.

21-36hit(36hit)